The Structure of Global Attractors for Dissipative Zakharov Systems with Forcing on the Torus
نویسندگان
چکیده
The Zakharov system was originally proposed to study the propagation of Langmuir waves in an ionized plasma. In this paper, motivated by the work of the first and third authors in [5], we numerically and analytically investigate the dynamics of the dissipative Zakharov system on the torus in 1 dimension. We find an interesting family of stable periodic orbits and fixed points, and explore bifurcations of those points as we take weaker and weaker dissipation.
منابع مشابه
Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملSmoothing and Global Attractors for the Zakharov System on the Torus
In this paper we consider the Zakharov system with periodic boundary conditions in dimension one. In the first part of the paper, it is shown that for fixed initial data in a Sobolev space, the difference of the nonlinear and the linear evolution is in a smoother space for all times the solution exists. The smoothing index depends on a parameter distinguishing the resonant and nonresonant cases...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملA Dissipative Integral Sliding Mode Control Redesign Method
This paper develops a new method of integral sliding mode control redesign for a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-based control law that was designed for the unperturbed systems. The nominal model is considered affine with matched and unmatched perturbations. The redesigned control law includes an integral sliding-based control signal such...
متن کاملDissipative Homoclinic Loops and Rank One Chaos
We prove that when subjected to periodic forcing of the form pμ,ρ,ω(t) = μ(ρh(x, y) + sin(ωt)), certain second order systems of differential equations with dissipative homoclinic loops admit strange attractors with SRB measures for a set of forcing parameters (μ, ρ, ω) of positive measure. Our proof applies the recent theory of rank one maps, developed by Wang and Young [30, 34] based on the an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 14 شماره
صفحات -
تاریخ انتشار 2015